Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# Methyl 1-(4-chlorobenzyl)-2-(4-methylpiperazin-1-yl)-1H-benz-imidazole-5-carboxylate hemihydrate 

Sabahat Özcan, ${ }^{\text {a* }}$ Engin Kendi, ${ }^{\text {a }}$ Meral Tunçbilek ${ }^{\text {b }}$ and Hakan Göker ${ }^{\text {b }}$

${ }^{\text {a Department of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, }}$ Turkey, and ${ }^{\mathbf{b}}$ Department of Pharmaceutical Chemistry, Ankara University, Tandoğan 06100, Ankara, Turkey
Correspondence e-mail: sozcan@eti.cc.hun.edu.tr
Received 7 July 1999
Accepted 5 January 2000
The title compound, $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, contains two independent molecules in the asymmetric unit. In each molecule the piperazine ring adopts a chair conformation; the deviations of the piperazine N atoms from the best plane through the remaining four C atoms are -0.678 (3) and 0.662 (3) $\AA$ in molecule $A$, and 0.687 (3) and -0.700 (3) $\AA$ in molecule $B$. The molecules are linked by two hydrogen bonds of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ type involving the O atom of the water molecule of crystallization.

## Comment

The benzimidazole nucleus is an essential part of many medicinally useful drugs. For example, omeprazole and lansoprazole are useful drugs in the treatment of peptic ulcers (Nishina et al., 1996), pimobendan is a non-glucosidic cardiotonic drug (Güngör et al., 1992), emedastine difumarate (KG-2413; Sakai et al., 1989) and astemizole (Hismanal; Awouters et al., 1983) were found to be useful for the treatment of allergic diseases, and enviroxime is an active drug against rhinoviruses (Victor et al., 1997).

The present compound, (I), is also a benzimidazole and was prepared for its antimicrobial activity (Göker et al., 1998). The structure of (I) was assigned by NMR, mass spectral and elemental analysis (Göker et al., 1998). Considering the

(I)
biological importance of substances containing the benzimidazole ring system, we describe in this paper the structure of compound (I).

The benzimidazole ring systems of the two molecules ( $A$ and $B$ ) are planar. The $\mathrm{N} 1-\mathrm{C} 2$ bond lengths [1.382 (4) and 1.390 (4) $\AA$ ] are comparatively longer than the value reported for benzimidazole [1.346 (4) $\AA$; Escande \& Galigne, 1974]. The $\mathrm{N} 1-\mathrm{C} 10 \quad[1.455(5)$ and $1.449(5) \AA]$ and $\mathrm{N} 2-\mathrm{C} 2$ [1.382 (5) and 1.379 (5) Å] bond lengths are normal for Csp ${ }^{3}$ N and $\mathrm{Csp} p^{2}-\mathrm{N}$ bonds (Allen et al., 1987). The phenyl ring at C 10 is also planar and makes an angle of $101.19(8)^{\circ}$ for $A$ and $79.42(8)^{\circ}$ for $B$ with the plane through the complete benzimidazole ring system.

The Cl 1 and $\mathrm{Cl} 1^{\prime}$ atoms lie almost in the phenyl ring planes, with deviations of 0.016 (1) and 0.002 (1) $\AA$ from the phenyl planes, respectively.

The $\mathrm{C}-\mathrm{Cl}$ bond length [Cl1-C14 1.744 (3) $\AA$ for $A$ and 1.738 (3) $\AA$ for $B$ ] is within the normal range. In 1-benzyl-2-(2,6-dichloroanilinomethyl)- 1 H -benzimidazole, the $\mathrm{C}-\mathrm{Cl}$ bond lengths are 1.739 (2) and 1.737 (2) Å (Kendi et al., 1998).

The piperazine ring adopts a perfect chair conformation in $A$ and $B$ (Velmurugan et al., 1994; Özbey et al., 1998). Best planes through the four non- N atoms make dihedral angles of $42.22(13)^{\circ}$ in $A$ and $32.81(17)^{\circ}$ in $B$ with the benzimidazole ring systems. The methyl group at N 4 of the piperazine ring is in the equatorial position (Allinger et al., 1965).

The structure shows that the $\mathrm{COOCH}_{3}$ group at C 5 and the benzimidazole ring are almost coplanar with a torsion angle $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 51-\mathrm{O} 1$ of $7.1(5)^{\circ}\left[173.5(4)^{\circ}\right.$ in $\left.B\right]$. The intramolecular distance $\mathrm{C} 10-\mathrm{N} 2$ of 2.968 (4) $\AA$ [3.033 (4) $\AA$ in $B$ ] is suggestive of a possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction. Atom C 10 is rotated towards the piperazine ring with a torsion angle $\mathrm{C} 10-$ $\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$ of -162.7 (3) ${ }^{\circ}$, possibly to enable N 2 to interact with the C 10 proton to form an intramolecular hydrogen bond. This angle is 179.9 (4) ${ }^{\circ}$ in 6-chloro-1-(phenylmethyl)-2[ N -(phenylmethyl)- N -(2,6-dichlorophenyl)]methyl- 1 H -benzimidazole (Tunçbilek et al., 1997) and -179.6 (2) ${ }^{\circ}$ in 1-benzyl-2-(2,6-dichloroanilinomethyl)-1 H -benzimidazole (Kendi et al., 1998).


Figure 1
ORTEP (Johnson, 1965) drawing of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.

The molecules are linked by hydrogen bonds of the $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{N}$ type involving the O atom of the water molecule of crystallization. The $\mathrm{O}-\mathrm{N}$ distances $[2.873$ (4) $\AA$ for $A$ and 2.957 (4) $\AA$ for $B$ ] suggest that water acts as a hydrogen-bond donor to the piperazine ring. The $\mathrm{H}_{2} \mathrm{O}(\mathrm{O} 3)$ molecule forms hydrogen bonds to both molecules in the asymmetric unit.

## Experimental

The title compound was synthesized by the reaction of methyl 2-chloro-1-( $p$-chlorobenzyl)-1 H -benzimidazole-5-carboxylate with $N$-methylpiperazine, and its structure was assigned by NMR, mass spectral and elemental analysis (Göker et al., 1998).

## Crystal data

$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$Z=4$
$M_{r}=407.90$
Triclinic, $P \overline{1}$
$a=11.227$ (1) $\AA$
$b=13.443$ (1) $\AA$
$c=15.835(2) \AA$
$\alpha=68.06(1)^{\circ}$
$\beta=72.55(1)^{\circ}$
$\gamma=76.30(1)^{\circ}$
$V=2092.3(3) \AA^{3}$
$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=11-18^{\circ}$
$\mu=0.209 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prismatic, yellow
$0.40 \times 0.40 \times 0.40 \mathrm{~mm}$

## Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical $\psi$ scans (North et al., 1968)
$T_{\text {min }}=0.853, T_{\text {max }}=0.922$
8182 measured reflections
7754 independent reflections
5364 reflections with $I>3 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.015 \\
& \theta_{\max }=25.7^{\circ} \\
& h=-13 \rightarrow 0 \\
& k=-16 \rightarrow 15 \\
& l=-19 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 120 \text { min } \\
& \text { intensity decay: } 3.3 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\left({ }^{\circ},{ }^{\circ}\right)$.

| C11-C14 | 1.744 (3) | $\mathrm{Cl1}^{\prime}-\mathrm{C} 14^{\prime}$ | 1.738 (3) |
| :---: | :---: | :---: | :---: |
| O1-C51 | 1.188 (5) | O1' - $\mathrm{C}^{\prime} 1^{\prime}$ | 1.192 (5) |
| O2-C51 | 1.343 (4) | $\mathrm{O} 2^{\prime}-\mathrm{C} 51^{\prime}$ | 1.317 (5) |
| N1-C2 | 1.382 (4) | $\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}$ | 1.390 (4) |
| N1-C10 | 1.455 (5) | $\mathrm{N} 1^{\prime}-\mathrm{C} 10^{\prime}$ | 1.449 (5) |
| N2-C2 | 1.382 (5) | $\mathrm{N} 2^{\prime}-\mathrm{C} 2^{\prime}$ | 1.379 (5) |
| N3-C2 | 1.304 (5) | $\mathrm{N} 3^{\prime}-\mathrm{C} 2^{\prime}$ | 1.309 (5) |
| N4-C24 | 1.466 (7) | $\mathrm{N} 4^{\prime}-\mathrm{C} 24^{\prime}$ | 1.468 (6) |
| C5-C51 | 1.488 (7) | C5 ${ }^{\prime}$ - 5 $51^{\prime}$ | 1.496 (7) |
| C51-O2-C52 | 116.1 (3) | C51 - ${ }^{\prime} 2^{\prime}-\mathrm{C} 52^{\prime}$ | 115.0 (3) |
| C20-N2-C23 | 110.8 (3) | $\mathrm{C} 2^{\prime}-\mathrm{N} 2^{\prime}-\mathrm{C} 20^{\prime}$ | 114.1 (3) |
| C21-N4-C22 | 109.7 (3) | $\mathrm{C} 22^{\prime}-\mathrm{N} 4^{\prime}-\mathrm{C} 21^{\prime}$ | 108.0 (3) |
| N1-C2-N3 | 114.0 (3) | $\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{N} 3^{\prime}$ | 113.7 (3) |
| $\mathrm{O} 1-\mathrm{C} 51-\mathrm{O} 2$ | 123.4 (4) | $\mathrm{O} 1^{\prime}-\mathrm{C} 51^{\prime}-\mathrm{O}^{\prime}$ | 123.2 (5) |
| C20-N2-C23-C22 | 59.7 (4) | $\mathrm{C} 23^{\prime}-\mathrm{N} 2^{\prime}-\mathrm{C} 20^{\prime}-\mathrm{C} 21^{\prime}$ | 57.7 (4) |
| C22-N4-C21-C20 | -58.2 (4) | $\mathrm{C} 21^{\prime}-\mathrm{N} 4^{\prime}-\mathrm{C} 22^{\prime}-\mathrm{C} 23^{\prime}$ | -61.3 (4) |
| C4-C5-C51-O1 | 7.1 (5) | $\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C} 51^{\prime}-\mathrm{O} 2^{\prime}$ | -4.0 (5) |
| N1-C10-C11-C12 | -38.6 (5) | $\mathrm{N} 1^{\prime}-\mathrm{C10}^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C1}^{\prime}{ }^{\prime}$ | -139.7 (3) |
| C12-C13-C14-Cl1 | 179.5 (3) | $\mathrm{C} 16^{\prime}-\mathrm{C} 15^{\prime}-\mathrm{C} 14^{\prime}-\mathrm{Cl1}^{\prime}$ | -179.1 (3) |

Table 2
Hydrogen-bonding geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :---: |
| $\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{~N} 4^{\text {i }}$ | 0.95 | 2.69 | $2.957(4)$ | 97 |
| $\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{~N} 4^{\mathrm{ii}}$ | 0.95 | 2.25 | $2.873(4)$ | 123 |

Symmetry codes: (i) $x-1,1+y, z$; (ii) $2-x, 1-y,-z$.

## Refinement

Refinement on $F \quad \mathrm{H}$-atoms constrained
$R=0.053 \quad w=1 /\left[\sigma F^{2}+(0.02 F)^{2}+1\right]$
$w R=0.068$
$(\Delta / \sigma)_{\max }=0.010$
$S=1.24$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
5364 reflections
514 parameters

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: MolEN; program(s) used to refine structure: MolEN; molecular graphics: MolEN. Hydrogen bonds were calculated with PARST (Nardelli, 1995).

The authors acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1230). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Allinger, N. L., Carpenter, J. G. D. \& Karkowski, F. M. (1965). J. Am. Chem. Soc. 87, 1232-1236.
Awouters, F. H. L., Niemegeers, C. J. E. \& Janssen, P. A. J. (1983). Arzneim. Forsch. (Drug Res.), 33, 381-388.
Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Escande, A. \& Galigne, J. G. (1974). Acta Cryst. B30, 1647-1648.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Göker, H., Tunçbilek, M., Ayhan, G. \& Altanlar, N. (1998). Farmaco, 53, 415420.

Güngör, T., Foquet, A., Teulon, J. M., Provost, D., Cazes, M. \& Cloarec, A. (1992). J. Med. Chem. 35, 4455-4463.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kendi, E., Özbey, S., Tunçbilek, M. \& Göker, H. (1998). Acta Cryst. C54, 854856.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nishina, K., Mikawa, N., Takao, Y., Shiga, M. \& Obara, H. (1996). Anesth. Analg. 82, 832-836.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Özbey, S., Kendi, E., Göker, H. \& Tunçbilek, M. (1998). J. Chem. Crystallogr. 28, 461-464.
Sakai, T., Hamada, T., Awata, N. \& Watanabe, J. (1989). J. Pharm. Dyn. 12, 530-536.
Tunçbilek, M., Göker, H., Ertan, R., Eryiğit, R., Kendi, E. \& Altanlar, N. (1997). Arch. Pharm. 330, 372-376.

Velmurugan, D., Govindasamy, L., Subramanian, E., Rajendran, T. M. \& Kandaswamy, M. (1994). Acta Cryst. C50, 931-933.
Victor, F., Loncharich, J. T., Tang, J. \& Spitzer, W. A. (1997). J. Med. Chem. 40, 3478-3483.

